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Abstract. We perform a complete analysis of nd scattering at next-to-next-to-leading order (NNLO) in
chiral effective field theory (EFT) and compare our predictions for selected observables with the ones based
on conventional nuclear forces.

PACS. 21.30.Cb Nuclear forces in vacuum – 21.45.+v Few-body systems

1 Introduction

Chiral perturbation theory (CHPT) is a powerful tool,
which allows to perform model-independent and system-
atic calculations of low-energy properties of hadronic sys-
tems. It is based upon the approximate and spontaneously
broken chiral symmetry of QCD. The low-energy hadronic
S-matrix elements are obtained via a simultaneous ex-
pansion in the low external momenta and quark masses
starting from the most general chiral invariant effective
Lagrangian for Goldstone bosons (pions in the case of two
flavors) and matter fields (nucleons, ∆, . . . ) . If few nu-
cleons are considered, the interaction becomes too strong
to be treated perturbatively and an additional resumma-
tion of the amplitude is mandatory. According to Wein-
berg [1], this can be achieved via solving the Lippmann-
Schwinger equation with the effective potential derived
using the CHPT technique. This scheme has been applied
successfully at NNLO to the two-nucleon (2N) system [2–
4] and recently to the 3N and 4N systems at NLO [5] and
NNLO [6]. The purpose of the present work is to compare
our results for nd scattering at NNLO presented in [6] with
the ones based on the conventional 2N and 3N forces [7].

2 The chiral 3NF at NNLO

Interactions between nucleons are classified in chiral EFT
according to the power of the expansion parameter Q/Λχ,
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where Q is the low-momentum scale and Λχ the chiral-
symmetry breaking scale of the order of the ρ-meson mass.
The pion mass Mπ is considered to be of the order Q.
For any time-ordered connected diagram contributing to
the few-nucleon scattering, which does not contain purely
2N intermediate states, the corresponding power ν of the
expansion parameter Q/Λχ is given by

ν = −4 + En + 2L+
∑

i

Vi∆i , (1)

where En, L and Vi are the numbers of external nucleon
lines, loops and vertices of type i, respectively. Further,
the quantity ∆i refers to the chiral dimension of a vertex
of type i and is defined as

∆i = di +
1
2
ni − 2 , (2)

with di the number of derivatives or Mπ insertions and ni

the number of nucleon lines at the vertex i. The inequality
∆i ≥ 0 is valid as a consequence of chiral invariance and
is of a crucial importance for the chiral expansion.

We see from eqs. (1), (2) that at LO (ν = 0) the effec-
tive Hamiltonian for few nucleons gets only contributions
from the 2N interactions given by the tree diagrams with
all vertices of dimension ∆i = 0. At NLO (ν = 2) ad-
ditional 2N diagrams appear with either L = 1 and all
vertices of the lowest dimension ∆i = 0 or with L = 0
and one vertex of dimension ∆i= 2 1. Note that the 3NF

1 There are no vertices of dimension ∆i = 1, which would
contribute to the tree 2N diagrams.
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Fig. 1. Three-nucleon force at NNLO. Solid and dashed lines
are nucleons and pions, respectively. Heavy dots (solid rectan-
gles) denote vertices with ∆i = 0 (∆i = 1).
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Fig. 2. Three-pion exchange 3NF with one ∆ in intermediate
states (graphs 1 and 2) and the corresponding 3NF in chiral
EFT without explicit ∆’s (graphs 3 and 4). Double solid lines
represent the ∆-isobar.

would appear at NLO as well, given by the tree diagrams
with all vertices with ∆i = 0. It however turns out that
the total contribution of the 3NF at NLO vanishes com-
pletely [1,8,3]. The 2N corrections at NNLO result from
the subleading (i.e. with one πNN vertex of dimension
∆i = 1) two-pion exchange (2PE) diagrams. The explicit
expressions for the 2NF at NNLO are presented in an
energy-dependent formulation in [2] and in the energy-
independent one in [9,3,4]. A complete NNLO analysis of
the 2N system has been carried out in [2,4,10]. The chiral
3NF at NNLO has been worked out in [8]. It is given by the
(subleading) 2PE contribution, one-pion exchange (1PE)
with the pion emitted (or absorbed) by the 2N contact in-
teraction and 3N contact interaction, see fig. 1. The Pauli
principle and the usual symmetry requirements (parity
invariance, rotational invariants, . . . ) lead to a strong re-
duction of the number of independent terms in the 3NF at
NNLO, leaving just one 1PE and one contact operator [6].

It has been demonstrated in [11] that the chiral
2PE 3NF matches with the low-momentum expansion
of various existing phenomenological 3NFs provided
they respect chiral symmetry. The remaining 1PE and
contact contributions are usually not included in the
conventional 3NFs. Let us now comment on the recent
Illinois models [12], which include, apart from the terms
already present in the Urbana IX model [13], a lot of new
spin and isospin structures. In particular, the P -wave
2PE 3NF has been taken into account as well as the
terms related to the first two diagrams in fig. 2. It is now
interesting to see at which order in chiral EFT one would
expect contributions from the three-pion exchange (3PE),
graphs 1 and 2. In fact, the ∆-isobar plays a special role
in chiral EFT due to the small value of the ∆N mass
splitting m∆ − mN = 293 MeV, which is only twice
as large as Mπ. For that reason it is not clear a priori
whether in EFT one should include it explicitly, assuming
m∆ −mN = O(Mπ), or integrate it out. On the one hand,

inclusion of ∆ yields a scheme, which is not strictly rooted
in QCD because of the decoupling theorem [14]. On the
other hand, it might be a useful phenomenological exten-
sion of the chiral EFT and a systematic power counting
has already been worked out [15]. Both formalisms are
used in the literature. In our approach without explicit
∆’s, the leading contributions from the graphs 1, 2 in
fig. 2 are represented by the diagrams 3 and 4. Note that
the leading ππNN vertices resulting from integrating out
the ∆ degree of freedom have a dimension ∆i = 1, while
the πN∆ vertices start with ∆i = 0. Then, according to
eqs. (1), (2), graphs 3 and 4 contribute at orders ν = 5
and ν = 6, respectively, i.e. are suppressed by 2 and 3
orders of the expansion parameter relative to the leading
3NF shown in fig. 1. If ∆’s are included explicitly, the
leading 3NF related to the 2PE with an intermediate ∆
is shifted one order lower and appears already at NLO
with ν = 2. Both graphs 1 and 2 in fig. 2 are then of the
same order and contribute at N3LO with ν = 4. Note,
however, that additional 3PE diagrams with 2 and 3 ∆’s
in intermediate states contribute at the same order ν = 4.

3 Results

In [6] we presented the NNLO analysis of the 3N and
4N systems and reported a significant improvement in the
description of various observables compared to the NLO
calculation [5]. The two unknown parameters in the chi-
ral 3NF have been fixed from the triton binding energy
and nd doublet scattering length, which allowed us to
make parameter-free predictions for various scattering ob-
servables. Specifically, we discussed the differential cross-
section, vector and tensor analysing powers for elastic nd
scattering at 3, 10 and 65 MeV as well as the cross-section
and vector analysing power for selected deuteron breakup
configurations. It is now interesting to compare our re-
sults with the ones based upon the conventional NN in-
teractions. The latter have been presented in [7] for elastic
scattering (at 3, 65 and higher energies) and in [16] for the
breakup. In general, both approaches lead to very similar
results up to Elab = 65 MeV and mostly agree with the
data. In what follows, we will only show selected cases, for
which different results are observed. We did not find any
singificant differences at 3 MeV. At 65 MeV, deviations
become more visible. We have also checked that the cor-
rections due to isospin-violating effects not yet included
in the chiral analysis are small at that energy, so that a
direct comparison with the results of [7,16] is possible.
In fig. 3 the tensor analysing powers T20, T21 and T22 for
elastic nd scattering are shown. The uncertainty of the chi-
ral predictions refer to the cut-off variation in the range
from 500 to 600 MeV. The light-shaded band results from
taking the AV18, CD Bonn, Nijm I, II and 93 NN forces
together with the Tucson Melbourne (TM) 3NF [17]. The
cut-off parameter in the conventional 3NFs is always ad-
justed in the way to reproduce the triton binding energy.
Note that the TM 3NF violates chiral symmetry [11]. The
TM′ 3NF refers to the chiral invariant 3NF based upon
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Fig. 3. nd tensor analysing powers T20, T21 and T22 at 65 MeV
at NNLO in chiral EFT (dark-shaded bands) compared to the
conventional NN forces + TM 3NF predictions (light-shaded
bands) and to the pd data from [18]. The solid (dashed) lines
refer to the AV18 + URBANA IX (CD Bonn + TM′) results.

the TM 3NF. It is remarkable that the largest deviations
are observed for the TM 3NF, which violates chiral sym-
metry. Chiral predictions are rather close to both, the
AV18 + URBANA IX and CD Bonn + TM′ ones, which
all show a better agreement with the data than the TM
results. Note that there might be additional corrections
due to the Coulomb force, which are not taken into ac-
count. The situation with the theoretical predictions of
the spin transfer coefficients shown in fig. 4 is qualita-
tively very similar. The largest deviations appear again
for the TM 3NF. Unfortunately, no data are available for
these observables.

We also show in fig. 5 the differential cross-section in
the specific breakup configuration, for which the largest
deviations between the two approaches are observed.

4 Summary

We observe, in general, a good agreement between chiral
predictions at NNLO and results based upon conventional
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Fig. 4. The spin transfer coefficients Kx′
yz, Ky′z′

x and Czz for
elastic nd scattering. Curves as in fig. 3.
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Fig. 5. pd breakup cross-section data (in mb MeV−1 sr−2)
along the kinematical locus S (in MeV) at 65 MeV. pd data
are from [19]. Curves as in fig. 3.

2N and 3N forces and with the data for nd scattering at
energies below 65 MeV. Largest deviations occur for the
TM 3NF, which violates chiral symmetry. More data of
high quality are needed to test the chiral EFT in the 3N
system and to probe the spin structure of the 3NF.
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